AWS Summit recap

This week, the annual AWS Summit took place in sunny Stockholm. This article aims to provide a recap of my impressions from the event.

It was evident that the event had grown from last year, with approximately 2000 people attending this year’s one day event at Waterfront Congress Centre. Only a few session were technical as most of the presentations just gave an overview of the different services and various use cases. I really appreciated the talks from different AWS customers who spoke about their use of AWS technologies and what problems they solved and how. I found it valuable to hear from different companies on how they leverage certain products in their production environments.

The opening keynote was long (2 hours!) and included a lot of sales talk. The main keynote speaker mentioned that 20 percent of the audience had never used any AWS services at all, which explains the thorough walkthrough of the different AWS products. One product which stood out was Amazon Inspector, which can detect and remediate security issues early in your AWS environment. It is not yet available in all regions, but is available in e.g. eu-west-1 (Ireland). It was also interesting to hear about migration of large amounts of data using Snowball, a physical device shipped to your datacenter, which allows you to move your data faster than over the Internet (except for the physical delivery of the device to and from your own datacenter).

It is undeniable that Internet of Things (IoT) is gaining traction and that the amount of connected devices around has grown exponentially the past few years. AWS provides several services for developing and running IoT services. With AWS IoT, your devices can securely communicate with your backend servers. What I found most interesting was the concept of device shadows. A shadow is an interface which allows you to communicate with a device even though it would be offline at the moment. In your application, you can communicate with the shadow without the need to care about whether the device is online or not. If you want to change the state of a device currently offline, you will update the shadow and when the device connects again, it will get the new desired state from the shadow.

At the startup track, we got to hear how Mojang leverages AWS for their Minecraft Realm concept. Instead of letting external parties host their game servers, they decided to go with AWS for Minecraft Realm, to allow for a more flexible infrastructure. An interesting aspect is that they had to develop their own algorithm for scaling out quickly, as in a gaming environment it is not acceptable to wait for five minutes for an auto scaling group to spin up new machines to meet the current demand from users. Instead, they have to use quite large instance types and have new servers on standby to be able to take on new traffic as it arrives. It is not trivial either to terminate instances where there is people playing, even though only a few, that wouldn’t provide a good user experience. Instead, they kindly inform the user that the server will terminate in five minutes and that usually makes the users change server. Not ideal but live migration is too far away at the moment. They still use old EC2 classic instances and they will have to do some heavy lifting to modernise their stack on AWS.

There was also a presentation from QuizUp on how they use infrastructure as code with Terraform to manage their AWS resources. A benefit they get from using Terraform instead of Cloudformation is to get an execution plan before actually applying changes. The drawback is that it is not possible to query Terraform for the current resources and their state directly from AWS.

In the world of relational databases in AWS (RDS), Aurora is an AWS developed database to maximise reliability, scalability and cost-effectiveness. It delivers up to five times the throughput of a standard MySQL running on the same hardware. It is designed to scale and to handle failures. It even provides an SQL extension to simulate failures:
ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE ];
ALTER SYSTEM SIMULATE percentage_of_failure PERCENT
* READ REPLICA FAILURE
* DISK FAILURE
* DISK CONGESTION
FOR INTERVAL quantity [ YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND ]

Probably the most interesting session of the day was about serverless architecture using AWS Lambda. Lambda allows you to upload snippets of code, functions to AWS which runs them for you. No need to provision servers or think about scalability, AWS does that for you and you only pay for the time your code executes in units of 100 ms. The best thing about this talk was the peek under the hood. AWS leverages Linux containers (not Docker) to isolate the resources of the uploaded functions and to be able to run and scale these quickly. It also offers predictive capacity planning. An interesting part is that you can upload libraries which your code depends on as part of your function, so you could basically run a small microservice just by using Lambda. To deploy your function, you package it in a zip archive and use Cloudformation (specified as type AWS::Lambda::Function). You’re able to run your function inside of your VPC and thus leverage other resources available within your VPC.

All in all I thought this was a great event. If you didn’t attend I really recommend attending the next one – especially if you’re already using AWS.

As we at Diabol are standard partners with Amazon, not only can we assist you with your cloud platform strategies but also to tie that together with the full view of your systems development process. Don’t hesitate to contact us!

You can read more about us at diabol.se.

Tommy Tynjä
@tommysdk